
1

Developer Notes for prototype.js
c o v e r s v e r s i o n 1 . 4 . 0
by Sergio Pereira
last update: March 10th 2006

What is that?
In case you haven't already used it, prototype.js (http://prototype.conio.net/) is a
JavaScript library written by Sam Stephenson (http://www.conio.net). This amazingly
well thought and well written piece of standards-compliant code takes a lot of the
burden associated with creating rich, highly interactive web pages that characterize the
Web 2.0 off your back.
If you tried to use this library recently, you probably noticed that documentation is not
one of its strongest points. As many other developers before me, I got my head around
prototype.js by reading the source code and experimenting with it. I thought it would be
nice to take notes while I learned and share with everybody else.
I'm also offering an un-official reference (see p. 14) for the objects, classes, functions,
and extensions provided by this library.
As you read the examples and the reference, developers familiar with the Ruby
programming language will notice an intentional similarity between Ruby's built-in
classes and many of the extensions implemented by this library.

Related article
Advanced JavaScript guide (http://www.sergiopereira.com/articles/advjs.html).

The utility functions
The library comes with many predefined objects and utility functions. The obvious goal
of these functions is to save you a lot of repeated typing and idioms.

Using the $() function
The $() function is a handy shortcut to the all-too-frequent
document.getElementById() function of the DOM. Like the DOM function, this
one returns the element that has the id passed as an argument.
Unlike the DOM function, though, this one goes further. You can pass more than one id
and $() will return an Array object with all the requested elements. The example
below should illustrate this.

2

<HTML>
<HEAD>
<TITLE> Test Page </TITLE>
<script src="prototype-1.4.0.js"></script>

<script>
 function test1()
 {
 var d = $('myDiv');
 alert(d.innerHTML);
 }

 function test2()
 {
 var divs = $('myDiv','myOtherDiv');
 for(i=0; i<divs.length; i++)
 {
 alert(divs[i].innerHTML);
 }
 }
</script>
</HEAD>

<BODY>
 <div id="myDiv">
 <p>This is a paragraph</p>
 </div>
 <div id="myOtherDiv">
 <p>This is another paragraph</p>
 </div>

 <input type="button" value=Test1 onclick="test1();">

 <input type="button" value=Test2 onclick="test2();">

</BODY>
</HTML>

Another nice thing about this function is that you can pass either the id string or the
element object itself, which makes this function very useful when creating other
functions that can also take either form of argument.

3

Using the $F() function
The $F() function is a another welcome shortcut. It returns the value of any field input
control, like text boxes or drop-down lists. The function can take as argument either the
element id or the element object itself.

<script>
 function test3()
 {
 alert($F('userName'));
 }
</script>

<input type="text" id="userName" value="Joe Doe">

<input type="button" value=Test3 onclick="test3();">

Using the $A() function
The $A() function converts the single argument it receives into an Array object.
This function, combined with the extensions for the Array class, makes it easier to
convert or copy any enumerable list into an Array object. One suggested use is to
convert DOM NodeLists into regular arrays, which can be traversed more efficiently.
See example below.

<script>
function showOptions() {
 var someNodeList = $('lstEmployees').getElementsByTagName('option');
 var nodes = $A(someNodeList);
 nodes.each(function(node) {
 alert(node.nodeName + ': ' + node.innerHTML);
 });
}
</script>

<select id="lstEmployees" size="10" >
 <option value="5">Buchanan, Steven</option>
 <option value="8">Callahan, Laura</option>
 <option value="1">Davolio, Nancy</option>
</select>

<input type="button" value="Show the options" onclick="showOptions();">

4

Using the $H() function
The $H() function converts objects into enumerable Hash objects that resemble
associative arrays.

<script>
function testHash()
{
 //let's create the object
 var a = {
 first: 10,
 second: 20,
 third: 30
 };

 //now transform it into a hash
 var h = $H(a);
 alert(h.toQueryString()); //displays: first=10&second=20&third=30
}
</script>

Using the $R() function
The $R() function is simply a short hand to writing new
ObjectRange(lowerBound, upperBound, excludeBounds).
Jump to the ObjectRange class documentation for a complete explanation of this class.
In the meantime, let's take a look at a simple example that also shows the usage of
iterators through the each method. More on that method will be found in the
Enumerable object documentation.

<script>
 function demoDollar_R(){
 var range = $R(10, 20, false);
 range.each(function(value, index){
 alert(value);
 });
 }

</script>

<input type="button" value="Sample Count" onclick="demoDollar_R();" >

5

Using the Try.these() function
The Try.these() function makes it easy when you want to, ahem, try different
function calls until one of them works. It takes a number of functions as arguments and
calls them one by one, in sequence, until one of them works, returning the result of that
successful function call.
In the example below, the function xmlNode.text works in some browsers, and
xmlNode.textContent works in the other browsers. Using the Try.these()
function we can return the one that works.

<script>
function getXmlNodeValue(xmlNode){
 return Try.these(
 function() {return xmlNode.text;},
 function() {return xmlNode.textContent;)
);
}
</script>

The Ajax object
The utility functions mentioned above are nice but, let's face it, they are not the most
advanced type of thing, now are they? You could probably have done it yourself and
you may even have similar functions in you own scripts. But those functions are just the
tip of the iceberg.
I'm sure that your interest in prototype.js is driven mostly by its AJAX capabilities. So
let's explain how the library makes your life easier when you need to perform AJAX
logic.
The Ajax object is a pre-defined object, created by the library to wrap and simplify the
tricky code that is involved when writing AJAX functionality. This object contains a
number of classes that provide encapsulated AJAX logic. Let's take a look at some of
them.

Using the Ajax.Request class
If you are not using any helper library, you are probably writing a whole lot of code to
create a XMLHttpRequest object and then track its progress asynchronously, then
extract the response and process it. And consider yourself lucky if you do not have to
support more than one type of browser.
To assist with AJAX functionality, the library defines the Ajax.Request class.

6

Let's say you have an application that can communicate with the server via the url
http://yoursever/app/get_sales?empID=1234&year=1998, which returns an XML
response like the following.

<?xml version="1.0" encoding="utf-8" ?>
<ajax-response>
 <response type="object" id="productDetails">
 <monthly-sales>
 <employee-sales>
 <employee-id>1234</employee-id>
 <year-month>1998-01</year-month>
 <sales>$8,115.36</sales>
 </employee-sales>
 <employee-sales>
 <employee-id>1234</employee-id>
 <year-month>1998-02</year-month>
 <sales>$11,147.51</sales>
 </employee-sales>
 </monthly-sales>
 </response>
</ajax-response>

Talking to the server to retrieve this XML is pretty simple using an Ajax.Request
object. The sample below shows how it can be done.

<script>
 function searchSales()
 {
 var empID = $F('lstEmployees');
 var y = $F('lstYears');
 var url = 'http://yoursever/app/get_sales';
 var pars = 'empID=' + empID + '&year=' + y;

 var myAjax = new Ajax.Request(url,
 {
 method: 'get',
 parameters: pars,
 onComplete: showResponse
 });

 }

 function showResponse(originalRequest)
 {
 //put returned XML in the textarea
 $('result').value = originalRequest.responseText;
}
</script>

<select id="lstEmployees" size="10" onchange="searchSales()">
 <option value="5">Buchanan, Steven</option>
 <option value="8">Callahan, Laura</option>
 <option value="1">Davolio, Nancy</option>
</select>

7

<select id="lstYears" size="3" onchange="searchSales()">
 <option selected="selected" value="1996">1996</option>
 <option value="1997">1997</option>
 <option value="1998">1998</option>
</select>

<textarea id=result cols=60 rows=10 ></textarea>

Can you see the second parameter passed to the constructor of the Ajax.Request
object? The parameter {method: 'get', parameters: pars, onComplete:
showResponse} represents an anonymous object in literal notation (a.k.a. JSON).
What it means is that we are passing an object that has a property named method that
contains the string 'get', another property named parameters that contains the
querystring of the HTTP request, and an onComplete property/method containing the
function showResponse.
There are a few other properties that you can define and populate in this object, like
asynchronous, which can be true or false and determines if the AJAX call to the
server will be made asynchronously (the default value is true.)
This parameter defines the options for the AJAX call. In our sample, we are calling the
url in the first argument via a HTTP GET command, passing the querystring contained
in the variable pars, and the Ajax.Request object will call the showResponse
function when it finishes retrieving the response.
As you may know, the XMLHttpRequest reports progress during the HTTP call. This
progress can inform four different stages: Loading, Loaded, Interactive, or Complete.
You can make the Ajax.Request object call a custom function in any of these stages,
the Complete being the most common one. To inform the function to the object, simply
provide property/methods named onXXXXX in the request options, just like the
onComplete from our example. The function you pass in will be called by the object
with two arguments, the first one will be the XMLHttpRequest (a.k.a. XHR) object
itself, the second one will be the evaluated X-JSON response HTTP header (if one is
present). You can then use the XHR to get the returned data and maybe check the
status property, which will contain the HTTP result code of the call. The X-JSON
header is useful if you want to return some script or JSON-formatted data.
Two other interesting options can be used to process the results. We can specify the
onSuccess option as a function to be called when the AJAX call executes without
errors and, conversily, the onFailure option can be a function to be called when a
server error happens. Just like the onXXXXX option functions, these two will also be
called passing the XHR that carried the AJAX call and the evaluated X-JSON header.
Our sample did not process the XML response in any interesting way. We just dumped
the XML in the textarea. A typical usage of the response would probably find the
desired information inside the XML and update some page elements, or maybe even
some sort of XSLT transformation to produce HTML in the page.
In version 1.4.0, a new form of event callback handling is introduced. If you have code
that should always be executed for a particular event, regardless of which AJAX call
caused it to happen, then you can use the new Ajax.Responders object.

8

Let's suppose you want to show some visual indication that an AJAX call is in progress,
like a spinning icon or something of that nature. You can use two global event handlers
to help you, one to show the icon when the first call starts and another one to hide the
icon when the last one finishes. See example below.

<script>
 var myGlobalHandlers = {
 onCreate: function(){
 Element.show('systemWorking');
 },

 onComplete: function() {
 if(Ajax.activeRequestCount == 0){
 Element.hide('systemWorking');
 }
 }
 };

 Ajax.Responders.register(myGlobalHandlers);
</script>

<div id='systemWorking'>Loading...</div>

For more complete explanations, see the Ajax.Request reference and the options
reference.

Using the Ajax.Updater class
If you have a server endpoint that can return information already formatted in HTML,
the library makes life even easier for you with the Ajax.Updater class. With it you
just inform which element should be filled with the HTML returned from the AJAX
call. An example speaks better than I can write.

<script>
 function getHTML()
 {
 var url = 'http://yourserver/app/getSomeHTML';
 var pars = 'someParameter=ABC';

 var myAjax = new Ajax.Updater(
 'placeholder',
 url,
 {
 method: 'get',
 parameters: pars
 });

 }
</script>

<input type=button value=GetHtml onclick="getHTML()">

9

<div id="placeholder"></div>

As you can see, the code is very similar to the previous example, with the exclusion of
the onComplete function and the element id being passed in the constructor. Let's
change the code a little bit to illustrate how it is possible to handle server errors on the
client.
We will add more options to the call, specifying a function to capture error conditions.
This is done using the onFailure option. We will also specify that the placeholder
only gets populated in case of a successful operation. To achieve this we will change
the first parameter from a simple element id to an object with two properties, success
(to be used when everything goes OK) and failure (to be used when things go bad.)
We will not be using the failure property in our example, just the reportError
function in the onFailure option.

<script>
 function getHTML()
 {
 var url = 'http://yourserver/app/getSomeHTML';
 var pars = 'someParameter=ABC';

 var myAjax = new Ajax.Updater(
 {success: 'placeholder'},
 url,
 {
 method: 'get',
 parameters: pars,
 onFailure: reportError
 });

 }

 function reportError(request)
 {
 alert('Sorry. There was an error.');
 }
</script>

<input type=button value=GetHtml onclick="getHTML()">
<div id="placeholder"></div>

If your server logic returns JavaScript code along with HTML markup, the
Ajax.Updater object can evaluate that JavaScript code. To get the object to treat the
response as JavaScript, you simply add evalScripts: true; to the list of properties
in the last argument of the object constructor. But there's a caveat. Those script blocks
will not be added to the page's script. As the option name evalScripts suggests, the
scripts will be evaluated. What's the difference, you may ask? Lets assume the
requested URL returns something like this:

10

<script language="javascript" type="text/javascript">
 function sayHi(){
 alert('Hi');
 }
</script>

<input type=button value="Click Me" onclick="sayHi()">

In case you've tried it before, you know it doesn't work. The reason is that the script
block will be evaluated, and evaluating a script like the above will not create a function
named sayHi. It will do nothing. To create this function we need to change our script
to create the function. See below.

<script language="javascript" type="text/javascript">

sayHi = function(){
 alert('Hi');
 };

</script>

<input type=button value="Click Me" onclick="sayHi()">

Note that in the previous example we did not use the var keyword to declare the
variable. Doing so would have created a function object that would be local to the script
block (at least in IE). Without the var keyword the function object is scoped to the
window, which is our intent.
For more complete explanations, see the Ajax.Updater reference and the options
reference.

Enumerating... Wow! Damn! Wahoo!
We are all familar with for loops. You know, create yourself an array, populate it with
elements of the same kind, create a loop control structure (for, foreach, while, repeat,
etc,) access each element sequentially, by its numeric index, and do something with the
element.
When you come to think about it, almost every time you have an array in your code it
means that you'll be using that array in a loop sooner or later. Wouldn't it be nice if the
array objects had more functionality to deal with these iterations? Yes, it would, and
many programming languages provide such functionality in their arrays or equivalent
structures (like collections and lists.)
Well, it turns out that prototype.js gives us the Enumerable object, which implements
a plethora of tricks for us to use when dealing with iterable data. The prototype.js
library goes one step further and extends the Array class with all the methods of
Enumerable.

11

Loops, Ruby-style
In standard javascript, if you wanted to sequentially display the elements of an array,
you could very well write something like this.

<script>
 function showList(){
 var simpsons = ['Homer', 'Marge', 'Lisa', 'Bart',
'Meg'];
 for(i=0;i<simpsons.length;i++){
 alert(simpsons[i]);
 }

 }

</script>

<input type="button" value="Show List" onclick="showList();" >

With our new best friend, prototype.js, we can rewrite this loop like this.

 function showList(){
 var simpsons = ['Homer', 'Marge', 'Lisa', 'Bart',
'Meg'];
 simpsons.each(function(familyMember){
 alert(familyMember);
 });

 }

You are probably thinking "big freaking deal...just a weird syntax for the same old
thing." Well, in the above example, yes, there's nothing too earth shattering going on.
Afterall, there's not much to be changed in such a drop-dead-simple example. But keep
reading, nonetheless.
Before we move on. Do you see this function that is being passed as an argument to the
each method? Let's start referring to it as an iterator function.

12

Your arrays on steroids
Like we mentioned above, it's very common for all the elements in your array to be of
the same kind, with the same properties and methods. Let's see how we can take
advantage of iterator functions with our new souped-up arrays.
Finding an element according to a criteria.

<script>
 function findEmployeeById(emp_id){
 var listBox = $('lstEmployees')
 var options = listBox.getElementsByTagName('option');
 options = $A(options);
 var opt = options.find(function(employee){
 return (employee.value == emp_id);
 });
 alert(opt.innerHTML); //displays the employee name
 }
</script>

<select id="lstEmployees" size="10" >
 <option value="5">Buchanan, Steven</option>
 <option value="8">Callahan, Laura</option>
 <option value="1">Davolio, Nancy</option>
</select>

<input type="button" value="Find Laura" onclick="findEmployeeById(8);"
>

Now let's kick it up another notch. See how we can filter out items in arrays, then
retrieve just a desired member from each element.

<script>
 function showLocalLinks(paragraph){
 paragraph = $(paragraph);
 var links = $A(paragraph.getElementsByTagName('a'));
 //find links that do not start with 'http'
 var localLinks = links.findAll(function(link){
 var start = link.href.substring(0,4);
 return start !='http';
 });
 //now the link texts
 var texts = localLinks.pluck('innerHTML');
 //get them in a single string
 var result = texts.inspect();
 alert(result);
 }

</script>
<p id="someText">
 This text has
 a lot of
 links. Some are

13

 external
 and some are local
</p>
<input type=button value="Find Local Links"
onclick="showLocalLinks('someText')">

It takes just a little bit of practice to get completely addicted to this syntax. Take a look
at the Enumerable and Array references for all the available functions.

14

Reference for prototype.js

Extensions to the JavaScript classes
One of the ways the prototype.js library adds functionality is by extending the existing
JavaScript classes.

Extensions for the Object class
Method Kind Arguments Description

extend(destination,
source) static

destination: any
object, source:
any object

Provides a way to implement inheritance by copying
all properties and methods from source to

destination.

inspect(targetObj) static targetObj: any object

Returns a human-readable string representation of
targetObj. It defaults to the return value of
toString if the given object does not define an

inspect instance method.

Extensions for the Number class
Method Kind Arguments Description

toColorPart() instance (none)

Returns the hexadecimal representation of the
number. Useful when converting the RGB
components of a color into its HTML
representation.

succ() instance (none) Returns the next number. This function is used
in scenarios that involve iteration.

times(iterator) instance
iterator: a function
object conforming to
Function(index)

Calls the iterator function repeatedly

passing the current index in the index
argument.

The following sample will display alert message boxes from 0 to 9.

<script>
 function demoTimes(){
 var n = 10;
 n.times(function(index){
 alert(index);
 });
 /***************************
 * you could have also used:
 * (10).times(....);
 ***************************/
 }

</script>

<input type=button value="Test Number.times()" onclick="demoTimes()">

15

Extensions for the Function class
Method Kind Arguments Description

bind(object) instance
object: the
object that
owns the method

Returns an instance of the function pre-bound
to the function(=method) owner object. The
returned function will have the same
arguments as the original one.

bindAsEventListener(object) instance
object: the
object that
owns the method

Returns an instance of the function pre-bound
to the function(=method) owner object.The
returned function will have the current
event object as its argument.

Let's see one of these extensions in action.

<input type=checkbox id=myChk value=1> Test?
<script>
 //declaring the class
 var CheckboxWatcher = Class.create();

 //defining the rest of the class implementation
 CheckboxWatcher.prototype = {

 initialize: function(chkBox, message) {
 this.chkBox = $(chkBox);
 this.message = message;
 //assigning our method to the event

 this.chkBox.onclick =
 this.showMessage.bindAsEventListener(this);

 },

 showMessage: function(evt) {
 alert(this.message + ' (' + evt.type + ')');
 }
 };

 var watcher = new CheckboxWatcher('myChk', 'Changed');
</script>

16

Extensions for the String class
Method Kind Arguments Description

stripTags() instance (none) Returns the string with any HTML or XML tags removed

stripScripts() instance (none) Returns the string with any <script /> blocks removed

escapeHTML() instance (none) Returns the string with any HTML markup characters properly
escaped

unescapeHTML() instance (none) The reverse of escapeHTML()

extractScripts() instance (none) Returns an Array object containing all the <script />
blocks found in the string.

evalScripts() instance (none) Evaluates each <script /> block found in the string.

toQueryParams() instance (none) Splits a querystring into an associative Array indexed by
parameter name (more like a hash).

parseQuery() instance (none) Same as toQueryParams().

toArray() instance (none) Splits the string into an Array of its characters.

camelize() instance (none)
Converts a hyphen-delimited-string into a camelCaseString. This
function is useful when writing code that deals with style
properties, for example.

Extensions for the Array class
To start off, Array extends Enumerable, so all the handy methods defined in the
Enumerable object are available. Besides that, the methods listed below are also
implemented.
Method Kind Arguments Description

clear() instance (none) Empties the array and returns itself.

compact() instance (none)
Returns the array without the elements that
are null or undefined. This method
does ot change the array itself

first() instance (none) Returns the first element of the array.

flatten() instance (none)

Returns a flat, one-dimensional version of
the array. This flattening happens by finding
each of the array's elements that are also
arrays and including their elements in the
returned array, recursively.

indexOf(value) instance value: what you are
looking for.

Returns the zero-based position of the given
value if it is found in the array. Returns -

1 if value is not found.

inspect() instance (none)
Overriden to return a nicely formatted
string representation of the array with its
elements.

last() instance (none) Returns the last element of the array.

reverse([applyToSelf]) instance

applyToSelf:
indicates if the
array itself should
also be reversed.

Returns the array in reverse sequence. If no
argument is given or if the argument is
true the array itself will also be reversed.
Otherwise it remains unchanged.

shift() instance (none)
Returns the first element and removes it
from the array, reducing the array's length
by 1.

without(value1 [, value2
[, .. valueN]]) instance

value1 ... valueN:
values to be
excluded if present
in the array.

Returns the array excluding the elements
that are included in the list of arguments.

17

Extensions for the document DOM object
Method Kind Arguments Description

getElementsByClassName(className
[, parentElement]) instance

className: name of a
CSS class associated
with the elements,
parentElement: object
or id of the element
that contains the
elements being
retrieved.

Returns all the elements that
are associated with the given
CSS class name. If no
parentElement id
given, the entire document
body will be searched.

Extensions for the Event object
Property Type Description

KEY_BACKSPACE Number 8: Constant. Code for the Backspace key.

KEY_TAB Number 9: Constant. Code for the Tab key.

KEY_RETURN Number 13: Constant. Code for the Return key.

KEY_ESC Number 27: Constant. Code for the Esc key.

KEY_LEFT Number 37: Constant. Code for the Left arrow key.

KEY_UP Number 38: Constant. Code for the Up arrow key.

KEY_RIGHT Number 39: Constant. Code for the Right arrow key.

KEY_DOWN Number 40: Constant. Code for the Down arrow key.

KEY_DELETE Number 46: Constant. Code for the Delete key.

observers: Array List of cached observers. Part of the internal implementation details of the object.

Method Kind Arguments Description

element(event) static event: an Event object Returns element that
originated the event.

isLeftClick(event) static event: an Event object Returns true if the left
mouse button was clicked.

pointerX(event) static event: an Event object
Returns the x coordinate of
the mouse pointer on the
page.

pointerY(event) static event: an Event object
Returns the y coordinate of
the mouse pointer on the
page.

stop(event) static event: an Event object

Use this function to abort
the default behavior of an
event and to suspend its
propagation.

findElement(event, tagName) static event: an Event object, tagName:
name of the desired tag.

Traverses the DOM tree
upwards, searching for the
first element with the given
tag name, starting from the
element that originated the
event.

observe(element, name,
observer, useCapture) static

element: object or id, name:
event name (like 'click', 'load',
etc), observer: function to
handle the event, useCapture: if

true, handles the event in the
capture phase and if false in
the bubbling phase.

Adds an event handler
function to an event.

stopObserving(element, name,
observer, useCapture) static

element: object or id, name:
event name (like 'click'),
observer: function that is
handling the event, useCapture:
if true handles the event in the
capture phase and if false in the
bubbling phase.

Removes an event handler
from the event.

_observeAndCache(element, static Private method, do not

18

name, observer, useCapture) worry about it.

unloadCache() static (none)

Private method, do not
worry about it. Clears all
cached observers from
memory.

Let's see how to use this object to add an event handler to the load event of the window
object.

<script>
 Event.observe(window, 'load', showMessage, false);

 function showMessage() {
 alert('Page loaded.');
 }
</script>

New objects and classes defined by prototype.js
Another way the library helps you is by providing many objects that implement both
support for object oriented designs and common functionality in general.

The PeriodicalExecuter object
This object provides the logic for calling a given function repeatedly, at a given
interval.
Method Kind Arguments Description

[ctor](callback,
interval) constructor

callback: a parameterless
function, interval: number of
seconds

Creates one instance of this
object that will call the function
repeatedly.

Property Type Description

callback Function() The function to be called. No parameters will be passed to it.

frequency Number This is actually the interval in seconds

currentlyExecuting Boolean Indicates if the function call is in progress

The Prototype object
The Prototype object does not have any important role, other than declaring the
version of the library being used.
Property Type Description

Version String The version of the library

emptyFunction Function() An empty function object

K Function(obj) A function object that just echoes back the given parameter.

ScriptFragment String A regular expression to identify scripts

The Enumerable object
The Enumerable object allows one to write more elegant code to iterate items in a list-
like structure.
Many other objects extend the Enumerable object to leverage its useful interface.

19

Method Kind Arguments Description

each(iterator) instance
iterator: a function
object conforming to
Function(value, index)

Calls the given iterator function passing
each element in the list in the first
argument and the index of the element
in the second argument

all([iterator]) instance
iterator: a function
object conforming to
Function(value, index)

This function is a way to test the entire
collection of values using a given
function. all will return false if

the iterator function returns false

or null for any of the elements. It

will return true otherwise. If no
iterator is given, then the test will be if
the element itself is different than
false or null. You can simply
read it as "check if all elements are
not-false."

any(iterator) instance

iterator: a function
object conforming to
Function(value, index),
optional.

This function is a way to test the entire
collection of values using a given
function. any will return true if the
iterator function does not returns
false or null for any of the

elements. It will return false
otherwise. If no iterator is given, then
the test will be if the element itself is
different than false or null.You
can simply read it as "check if any
element is not-false."

collect(iterator) instance
iterator: a function
object conforming to
Function(value, index)

Calls the iterator function for each
element in the collection and returns
each result in an Array, one result
element for each element in the
collection, in the same sequence.

detect(iterator) instance
iterator: a function
object conforming to
Function(value, index)

Calls the iterator function for each
element in the collection and returns
the first element that caused the
iterator function to return true (or,
more precisely, not-false.) If no
element returns true, then detect
returns null.

entries() instance (none) Same as toArray().

find(iterator) instance
iterator: a function
object conforming to
Function(value, index)

Same as detect().

findAll(iterator) instance
iterator: a function
object conforming to
Function(value, index)

Calls the iterator function for each
element in the collection and returns an
Array with all the elements that
caused the iterator function to return a
value that resolves to true. This
function is the opposite of
reject().

grep(pattern [,
iterator]) instance

pattern: a RegExp object
used to match the
elements, iterator: a
function object conforming
to Function(value, index)

Tests the string value of each element
in the collection against the
pattern regular expression . The

function will return an Array
containing all the elements that
matched the regular expression. If the
iterator function is given, then the
Array will contain the result of
calling the iterator with each element
that was a match.

20

include(obj) instance obj: any object

Tries to find the given object in the
collection. Returns true if the object

is found, false otherwise.

inject(initialValue,
iterator) instance

initialValue: any object
to be used as the initial
value, iterator: a
function object conforming
to Function(accumulator,
value, index)

Combines all the elements of the
collection using the iterator function.
The iterator is called passing the result
of the previous iteration in the
accumulator argument. The first
iteration gets initialValue in

the accumulator argument. The
last result is the final return value.

invoke(methodName [,
arg1 [, arg2 [...]]]) instance

methodName: name of the
method that will be called
in each element,
arg1..argN: arguments that
will be passed in the
method invocation.

Calls the method specified by
methodName in each element of the
collection, passing any given
arguments (arg1 to argN), and returns
the results in an Array object.

map(iterator) instance
iterator: a function
object conforming to
Function(value, index)

Same as collect().

max([iterator]) instance
iterator: a function
object conforming to
Function(value, index)

Returns the element with the greatest
value in the collection or the greatest
result of calling the iterator for each
element in the collection, if an iterator
is given.

member(obj) instance obj: any object Same as include().

min([iterator]) instance
iterator: a function
object conforming to
Function(value, index)

Returns the element with the lowest
value in the collection or the lowest
result of calling the iterator for each
element in the collection, if an iterator
is given.

partition([iterator]) instance
iterator: a function
object conforming to
Function(value, index)

Returns an Array containing two
other arrays. The first array will contain
all the elements that caused the
iterator function to return true and
the second array will contain the
remaining elements. If the iterator is
not given, then the first array will
contain the elements that resolve to
true and the other array will contain
the remaining elements.

pluck(propertyName) instance

propertyName name of the
property that will be read
from each element. This
can also contain the index
of the element

Retrieves the value to the property
specified by propertyName in each
element of the collection and returns
the results in an Array object.

reject(iterator) instance
iterator: a function
object conforming to
Function(value, index)

Calls the iterator function for each
element in the collection and returns an
Array with all the elements that
caused the iterator function to return a
value that resolves to false. This
function is the opposite of
findAll().

select(iterator) instance
iterator: a function
object conforming to
Function(value, index)

Same as findAll().

sortBy(iterator) instance
iterator: a function
object conforming to
Function(value, index)

Returns an Array with all the
elements sorted according to the result
the iterator function call.

toArray() instance (none) Returns an Array with all the
elements of the collection.

zip(collection1[, instance collection1 .. Merges each given collection with the

21

collection2 [, ...
collectionN
[,transform]]])

collectionN: enumerations
that will be merged,
transform: a function
object conforming to
Function(value, index)

current collection. The merge operation
returns a new array with the same
number of elements as the current
collection and each element is an array
(let's call them sub-arrays) of the
elements with the same index from
each of the merged collections. If the
transform function is given, then each
sub-array will be transformed by this
function before being returned. Quick
example: [1,2,3].zip([4,5,6],
[7,8,9]).inspect() returns "[
[1,4,7],[2,5,8],[3,6,9]]"

The Hash object
The Hash object implements a hash structure, i.e. a collection of Key:Value pairs.
Each item in a Hash object is an array with two elements: first the key then the value.
Each item also has two properties: key and value, which are pretty self-explanatory.
Method Kind Arguments Description

keys() instance (none) Returns an Array with the keys of all items.

values() instance (none) Returns an Array with the values of all items.

merge(otherHash) instance
otherHash:
Hash
object

Combines the hash with the other hash passed in and returns the
new resulting hash.

toQueryString() instance (none)
Returns all the items of the hash in a string formatted like a query
string, e.g.
'key1=value1&key2=value2&key3=value3'

inspect() instance (none) Overriden to return a nicely formatted string representation of the
hash with its key:value pairs.

The ObjectRange class
Inherits from Enumerable
Represents a range of values, with upper and lower bounds.
Property Type Kind Description

start (any) instance The lower bound of the range

end (any) instance The upper bound of the range

exclusive Boolean instance Determines if the boundaries themselves are part of the range.

Method Kind Arguments Description

[ctor](start, end,
exclusive) constructor

start: the lower bound,
end: the upper bound,
exclusive: include the
bounds in the range?

Creates one range object, spanning
from start to end. It is

important to note that start and

end have to be objects of the same
type and they must have a
succ() method.

include(searchedValue) instance searchedValue: value
that we are looking for

Checks if the given value is part of
the range. Returns true or

false.

22

The Class object
The Class object is used when declaring the other classes in the library. Using this
object when declaring a class causes the to new class to support an initialize()
method, which serves as the constructor.
See the sample below.

//declaring the class
var MySampleClass = Class.create();

//defining the rest of the class implmentation
MySampleClass.prototype = {

 initialize: function(message) {
 this.message = message;
 },

 showMessage: function(ajaxResponse) {
 alert(this.message);
 }
};

//now, let's instantiate and use one object
var myTalker = new MySampleClass('hi there.');
myTalker.showMessage(); //displays alert

Method Kind Arguments Description

create(*) instance (any) Defines a constructor for a new class

23

The Ajax object
This object serves as the root and namespace for many other classes that provide AJAX
functionality.
Property Type Kind Description

activeRequestCount Number instance The number of AJAX requests in progress.

Method Kind Arguments Description

getTransport() instance (none) Returns a new XMLHttpRequest object

The Ajax.Responders object
Inherits from Enumerable
This object maintains a list of objects that will be called when Ajax-related events
occur. You can use this object, for example, if you want to hook up a global exception
handler for AJAX operations.
Property Type Kind Description

responders Array instance The list of objects registered for AJAX events notifications.

Method Kind Arguments Description

register(responderToAdd) instance
responderToAdd: object
with methods that will
be called.

The object passed in the
responderToAdd argument
should contain methods named like
the AJAX events (e.g. onCreate,

onComplete,

onException, etc.) When the
corresponding event occurs all the
registered objects that contain a
method with the appropriate name
will have that method called.

unregister(responderToRemove) instance
responderToRemove:
object to be removed
from the list.

The object passed in the
responderToRemove
argument will be removed from the
list of registered objects.

dispatch(callback, request,
transport, json) instance

callback: name of the
AJAX event being
reported, request: the
Ajax.Request object
responsible for the
event, transport: the
XMLHttpRequest object
that carried (or is
carrying) the AJAX
call, json: the X-JSON
header of the response
(if present)

Runs through the list of registered
objects looking for the ones that
have the method determined in the
callback argument. Then each
of these methods is called passing
the other 3 arguments. If the AJAX
response contains a X-JSON HTTP
header with some JSON content,
then it will be evaluated and passed
in the json argument. If the event

is onException, the transport
argument will have the exception
instead and json will not be
passed.

24

The Ajax.Base class
This class is used as the base class for most of the other classes defined in the Ajax
object.
Method Kind Arguments Description

setOptions(options) instance options: AJAX options Sets the desired options for the AJAX operation

responseIsSuccess() instance (none)
Returns true if the AJAX operation succeeded,

false otherwise

responseIsFailure() instance (none) The opposite of responseIsSuccess().

The Ajax.Request class
Inherits from Ajax.Base
Encapsulates AJAX operations
Property Type Kind Description

Events Array static
List of possible events/statuses reported during an AJAX operation.
The list contains: 'Uninitialized', 'Loading', 'Loaded', 'Interactive', and
'Complete.'

transport XMLHttpRequest instance The XMLHttpRequest object that carries the AJAX operation

url String instance The URL targeted by the request.

Method Kind Arguments Description

[ctor](url, options) constructor

url: the url
to be
fetched,
options:
AJAX options

Creates one instance of this object that
will call the given url using the given

options. The onCreate event will be
raised during the constructor call.
Important: It is worth noting that the
chosen url is subject to the browser's
security settings. In many cases the
browser will not fetch the url if it is not
from the same host (domain) as the
current page. You should ideally use only
local urls to avoid having to configure or
restrict the user's browser. (Thanks Clay).

evalJSON() instance (none)

This method is typically not called
externally. It is called internally to
evaluate the content of an eventual X-
JSON HTTP header present in the AJAX
response.

evalReponse() instance (none)

This method is typically not called
externally. If the AJAX response has a
Content-type header of

text/javascript then the
response body will be evaluated and this
method will be used.

header(name) instance name: HTTP
header name

This method is typically not called
externally. It is called internally to retrieve
the contents of any HTTP header of the
AJAX response.

onStateChange() instance (none)
This method is typically not called
externally. It is called by the object itself
when the AJAX call status changes.

request(url) instance url: url for
the AJAX

This method is typically not called
externally. It is already called during the

25

call constructor call.

respondToReadyState(readyState) instance
readyState:
state number
(1 to 4)

This method is typically not called
externally. It is called by the object itself
when the AJAX call status changes.

setRequestHeaders() instance (none)

This method is typically not called
externally. It is called by the object itself
to assemble the HTTP header that will be
sent during the HTTP request.

The options argument object
An important part of the AJAX operations is the options argument. There's no
options class per se. Any object can be passed, as long as it has the expected
properties. It is common to create anonymous objects just for the AJAX calls.
Property Type Default Description

method String 'post' Method of the HTTP request

parameters String '' The url-formatted list of values passed to the
request

asynchronous Boolean true Indicates if the AJAX call will be made
asynchronously

postBody String undefined Content passed to in the request's body in case of
a HTTP POST

requestHeaders Array undefined

List of HTTP headers to be passed with the
request. This list must have an even number of
items, any odd item is the name of a custom
header, and the following even item is the string
value of that header. Example:['my-
header1', 'this is the
value', 'my-other-header',
'another value']

onXXXXXXXX Function(XMLHttpRequest,
Object) undefined

Custom function to be called when the respective
event/status is reached during the AJAX call.
Example var myOpts =
{onComplete: showResponse,
onLoaded: registerLoaded};.
The function used will receive one argument,
containing the XMLHttpRequest object
that is carrying the AJAX operation and another
argument containing the evaluated X-JSON
response HTTP header.

onSuccess Function(XMLHttpRequest,
Object) undefined

Custom function to be called when the AJAX call
completes successfully. The function used will
receive one argument, containing the
XMLHttpRequest object that is carrying
the AJAX operation and another argument
containing the evaluated X-JSON response HTTP
header.

onFailure Function(XMLHttpRequest,
Object) undefined

Custom function to be called when the AJAX call
completes with error. The function used will
receive one argument, containing the
XMLHttpRequest object that is carrying
the AJAX operation and another argument
containing the evaluated X-JSON response HTTP
header.

onException Function(Ajax.Request,
exception) undefined

Custom function to be called when an exceptional
condition happens on the client side of the AJAX
call, like an invalid response or invalid arguments.
The function used will receive two arguments,

26

containing the Ajax.Request object that
wraps the AJAX operation and the exception
object.

insertion an Insertion class undefined

A class that will determine how the new content
will be inserted. It can be
Insertion.Before,

Insertion.Top,

Insertion.Bottom, or

Insertion.After. Applies only to

Ajax.Updater objects.

evalScripts Boolean undefined,
false

Determines if script blocks will be evaluated when
the response arrives. Applies only to
Ajax.Updater objects.

decay Number undefined,
1

Determines the progressive slowdown in a
Ajax.PeriodicalUpdater object
refresh rate when the received response is the
same as the last one. For example, if you use 2,
after one of the refreshes produces the same
result as the previous one, the object will wait
twice as much time for the next refresh. If it
repeats again, the object will wait four times as
much, and so on. Leave it undefined or use 1 to
avoid the slowdown.

The Ajax.Updater class
Inherits from Ajax.Request
Used when the requested url returns HTML that you want to inject directly in a specific
element of your page. You can also use this object when the url returns <script>
blocks that will be evaluated upon arrival. Use the evalScripts option to work with
scripts.
Property Type Kind Description

containers Object instance
This object contains two properties: containers.success will be

used when the AJAX call succeeds, and containers.failure will be
used otherwise.

Method Kind Arguments Description

[ctor](container,
url, options) constructor

container:this can be the id of
an element, the element object
itself, or an object with two
properties - object.success
element (or id) that will be
used when the AJAX call
succeeds, and object.failure
element (or id) that will be
used otherwise. url: the url to

be fetched, options: AJAX
options

Creates one instance of this object
that will call the given url using

the given options.

updateContent() instance (none)

This method is typically not called
externally. It is called by the
object itself when the response is
received. It will update the
appropriate element with the
HTML or call the function passed
in the insertion option. The
function will be called with two
arguments, the element to be
updated and the response text.

27

The Ajax.PeriodicalUpdater class
Inherits from Ajax.Base
This class repeatedly instantiates and uses an Ajax.Updater object to refresh an
element on the page, or to perform any of the other tasks the Ajax.Updater can
perform. Check the Ajax.Updater reference for more information.
Property Type Kind Description

container Object instance This value will be passed straight to the Ajax.Updater's
constructor.

url String instance This value will be passed straight to the Ajax.Updater's
constructor.

frequency Number instance

Interval (not frequency) between refreshes, in seconds. Defaults to 2
seconds. This number will be multiplied by the current decay when

invoking theAjax.Updater object

decay Number instance Keeps the current decay level applied when re-executing the task

updater Ajax.Updater instance The most recently used Ajax.Updater object

timer Object instance The JavaScript timer being used to notify the object when it is time for
the next refresh.

Method Kind Arguments Description

[ctor](container,
url, options) constructor

container:this can be the id of an
element, the element object itself,
or an object with two properties -

object.success element (or id)
that will be used when the AJAX call

succeeds, and object.failure
element (or id) that will be used
otherwise. url: the url to be

fetched, options: AJAX options

Creates one instance of this
object that will call the given
url using the given

options.

start() instance (none)

This method is typically not
called externally. It is called
by the object itself to start
performing its periodical
tasks.

stop() instance (none)

This method is typically not
called externally. It is called
by the object itself to stop
performing its periodical
tasks.

updateComplete() instance (none)

This method is typically not
called externally. It is called
by the currently used
Ajax.Updater after it
completes the request. It is
used to schedule the next
refresh.

onTimerEvent() instance (none)

This method is typically not
called externally. It is called
internally when it is time for
the next update.

28

The Element object
This object provides some utility functions for manipulating elements in the DOM.
Method Kind Arguments Description

addClassName(element,
className) instance

element: element
object or id,
className: name of a
CSS class

Adds the given class name to the
element's class names.

classNames(element) instance element: element
object or id

Returns an
Element.ClassNames object
representing the CSS class names
associated with the given element.

cleanWhitespace(element) instance element: element
object or id

Removes any white space text node
children of the element

empty(element) instance element: element
object or id

Returns a Boolean value indicating if
the element tag is empty (or has only
whitespaces)

getDimensions(element) instance element: element
object or id

getHeight(element) instance element: element
object or id

Returns the offsetHeight of the
element

getStyle(element,
cssProperty) instance

element: element
object or id,
cssProperty name of a
CSS property (either
format 'prop-name' or
'propName' works).

Returns the value of the CSS property in
the given element or null if not
present.

hasClassName(element,
className) instance

element: element
object or id,
className: name of a
CSS class

Returns true if the element has the
given class name as one of its class
names.

hide(elem1 [, elem2 [,
elem3 [...]]]) instance elemN: element object

or id
Hides each element by setting its
style.display to 'none'.

makeClipping(element) instance element: element
object or id

makePositioned(element) instance element: element
object or id

remove(element) instance element: element
object or id

Removes the element from the
document.

removeClassName(element,
className) instance

element: element
object or id,
className: name of a
CSS class

Removes the given class name from the
element's class names.

scrollTo(element) instance element: element
object or id

Scrolls the window to the element
position.

setStyle(element,
cssPropertyHash) instance

element: element
object or id,
cssPropertyHash Hash
object with the styles
to be applied.

Sets the value of the CSS properties in
the given element, according to the
values in the cssPropertyHash
argument.

show(elem1 [, elem2 [,
elem3 [...]]]) instance elemN: element object

or id
Shows each element by resetting its
style.display to ''.

toggle(elem1 [, elem2 [,
elem3 [...]]]) instance elemN: element object

or id
Toggles the visibility of each passed
element.

undoClipping(element) instance element: element
object or id

undoPositioned(element) instance element: element
object or id

update(element, html) instance element: element
object or id, html:

Replaces the inner html of the element
with the given html argument. If the

29

html content given html contains <script> blocks
they will not be included but they will be
evaluated.

visible(element) instance element: element
object or id

Returns a Boolean value indicating if
the element is visible.

30

The Element.ClassNames class
Inherits from Enumerable
Represents the collection of CSS class names associated with an element.
Method Kind Arguments Description

[ctor](element) constructor
element: any DOM
element object or
id

Creates an Element.ClassNames object
representing the CSS class names of the given
element.

add(className) instance className: a CSS
class name

Includes the given CSS class name in the list of class
names associated with the element.

remove(className) instance className: a CSS
class name

Removes the given CSS class name from the list of
class names associated with the element.

set(className) instance className: a CSS
class name

Associates the element with the given CSS class
name, removing any other class names from the
element.

The Abstract object
This object serves as the root for other classes in the library. It does not have any
properties or methods. The classes defined in this object are also treated as traditional
abstract classes.

The Abstract.Insertion class
This class is used as the base class for the other classes that will provide dynamic
content insertion. This class is used like an abstract class.
Method Kind Arguments Description

[ctor](element, content) constructor
element: element object or
id, content: HTML to be
inserted

Creates an object that will
help with dynamic content
insertion.

contentFromAnonymousTable() instance (none)

Property Type Kind Description

adjacency String static, parameter

Parameter that specifies where the content will be placed relative to the
given element. The possible values are: 'beforeBegin',

'afterBegin', 'beforeEnd', and 'afterEnd'.

element Object instance The element object that the insertion will be made relative to.

content String instance The HTML that will be inserted.

The Insertion object
This object serves as the root for other classes in the library. It does not have any
properties or methods. The classes defined in this object are also treated as traditional
abstract classes.

31

The Insertion.Before class
Inherits from Abstract.Insertion
Inserts HTML before an element.
Method Kind Arguments Description

[ctor](element,
content) constructor

element: element
object or id,
content: HTML to be
inserted

Inherited from Abstract.Insertion.
Creates an object that will help with dynamic
content insertion.

The following code

Hello, Wiggum. How's it
going?

<script> new Insertion.Before('person', 'Chief '); </script>

Will change the HTML to

Hello, Chief Wiggum. How's it
going?

The Insertion.Top class
Inherits from Abstract.Insertion
Inserts HTML as the first child under an element. The content will be right after the
opening tag of the element.
Method Kind Arguments Description

[ctor](element,
content) constructor

element: element
object or id,
content: HTML to be
inserted

Inherited from Abstract.Insertion.
Creates an object that will help with dynamic
content insertion.

The following code

Hello, Wiggum. How's it
going?

<script> new Insertion.Top('person', 'Mr. '); </script>

Will change the HTML to

Hello, Mr. Wiggum. How's it
going?

32

The Insertion.Bottom class
Inherits from Abstract.Insertion
Inserts HTML as the last child under an element. The content will be right before the
element's closing tag.
Method Kind Arguments Description

[ctor](element,
content) constructor

element: element
object or id,
content: HTML to be
inserted

Inherited from Abstract.Insertion.
Creates an object that will help with dynamic
content insertion.

The following code

Hello, Wiggum. How's it
going?

<script> new Insertion.Bottom('person', " What's up?"); </script>

Will change the HTML to

Hello, Wiggum. How's it going?
What's up?

The Insertion.After class
Inherits from Abstract.Insertion
Inserts HTML right after the element's closing tag.
Method Kind Arguments Description

[ctor](element,
content) constructor

element: element
object or id,
content: HTML to be
inserted

Inherited from Abstract.Insertion.
Creates an object that will help with dynamic
content insertion.

The following code

Hello, Wiggum. How's it
going?

<script> new Insertion.After('person', ' Are you there?'); </script>

Will change the HTML to

Hello, Wiggum. How's it
going? Are you there?

33

The Field object
This object provides some utility functions for working with input fields in forms.
Method Kind Arguments Description

clear(field1 [, field2 [,
field3 [...]]]) instance fieldN: field element

object or id
Clears the value of each passed form
field element.

present(field1 [, field2 [,
field3 [...]]]) instance fieldN: field element

object or id
Returns true only if all forms fields
contain non-empty values.

focus(field) instance field: field element
object or id

Moves the input focus to the given form
field.

select(field) instance field: field element
object or id

Selects the value in fields that support
text selection

activate(field) instance field: field element
object or id

Move the focus and selects the value in
fields that support text selection

The Form object
This object provides some utility functions for working with data entry forms and their
input fields.

Method Kind
Argumen
ts Description

serialize(form) instan
ce

form:
form
element
object
or id

Returns a url-formatted list of field names and their values, like
'field1=value1&field2=value2&field3=v
alue3'

findFirstElement(fo
rm)

instan
ce

form:
form
element
object
or id

Returns the first enabled field element in the form.

getElements(form) instan
ce

form:
form
element
object
or id

Returns an Array containing all the input fields in the form.

getInputs(form [,
typeName [, name]])

instan
ce

form:
form
element
object
or id,
typeName
: the
type of
the
input
element,
name:
the name
of the
input
element.

Returns an Array containing all the <input> elements in

the form. Optionally, the list can be filtered by the type or

name attributes of the elements.

disable(form) instan
ce

form:
form
element
object
or id

Disables all the input fields in the form.

enable(form) instan
ce

form:
form
element
object
or id

Enables all the input fields in the form.

34

focusFirstElement(f
orm)

instan
ce

form:
form
element
object
or id

Activates the first visible, enabled input field in the form.

reset(form) instan
ce

form:
form
element
object
or id

Resets the form. The same as calling the reset() method of
the form object.

The Form.Element object
This object provides some utility functions for working with form elements, visible or
not.
Method Kind Arguments Description

serialize(element) instance
element:
element object
or id

Returns the element's name=value pair, like
'elementName=elementValue'

getValue(element) instance
element:
element object
or id

Returns the value of the element.

The Form.Element.Serializers object
This object provides some utility functions that are used internally in the library to
assist extracting the current value of the form elements.
Method Kind Arguments Description

inputSelector(element) instance

element: object or id
of a form element that
has the checked
property, like a radio
button or checkbox.

Returns an Array with the element's
name and value, like
['elementName',
'elementValue']

textarea(element) instance

element: object or id
of a form element that
has the value property,
like a textbox, button
or password field.

Returns an Array with the element's
name and value, like
['elementName',
'elementValue']

select(element) instance element: object of a <select> element

Returns an Array with the element's
name and all selected options' values or
texts, like ['elementName',
'selOpt1 selOpt4
selOpt9']

35

The Abstract.TimedObserver class
This class is used as the base class for the other classes that will monitor one element
until its value (or whatever property the derived class defines) changes. This class is
used like an abstract class.
Subclasses can be created to monitor things like the input value of an element, or one of
the style properties, or number of rows in a table, or whatever else you may be
interested in tracking changes to.
Method Kind Arguments Description

[ctor](element, frequency,
callback) constructor

element: element object
or id, frequency:
interval in seconds,
callback: function to be
called when the element
changes

Creates an object that
will monitor the element.

Derived classes have to
implement this method to
determine what is the current
value being monitored in the
element.

registerCallback() instance (none)

This method is typically
not called externally. It is
called by the object itself
to start monitoring the
element.

onTimerEvent() instance (none)

This method is typically
not called externally. It is
called by the object itself
periodically to check the
element.

Property Type Description

element Object The element object that is being monitored.

frequency Number This is actually the interval in seconds between checks.

callback Function(Object,
String)

The function to be called whenever the element changes. It will receive
the element object and the new value.

lastValue String The last value verified in the element.

The Form.Element.Observer class
Inherits from Abstract.TimedObserver
Implementation of an Abstract.TimedObserver that monitors the value of form
input elements. Use this class when you want to monitor an element that does not
expose an event that reports the value changes. In that case you can use the
Form.Element.EventObserver class instead.
Method Kind Arguments Description

[ctor](element,
frequency,
callback)

constructor

element: element
object or id,
frequency: interval
in seconds, callback:
function to be called
when the element
changes

Inherited from
Abstract.TimedObserver. Creates
an object that will monitor the element's
value property.

getValue() instance (none) Returns the element's value.

36

The Form.Observer class
Inherits from Abstract.TimedObserver
Implementation of an Abstract.TimedObserver that monitors any changes to any
data entry element's value in a form. Use this class when you want to monitor a form
that contais a elements that do not expose an event that reports the value changes. In
that case you can use the Form.EventObserver class instead.
Method Kind Arguments Description

[ctor](form,
frequency,
callback)

constructor

form: form object or id,
frequency: interval in
seconds, callback
function to be called
when any data entry
element in the form
changes

Inherited from
Abstract.TimedObserver. Creates
an object that will monitor the form for
changes.

getValue() instance (none) Returns the serialization of all form's data.

The Abstract.EventObserver class
This class is used as the base class for the other classes that execute a callback function
whenever a value-changing event happens for an element.
Multiple objects of type Abstract.EventObserver can be bound to the same
element, without one wiping out the other. The callbacks will be executed in the order
they are assigned to the element.
The triggering event is onclick for radio buttons and checkboxes, and onchange for
textboxes in general and listboxes/dropdowns.
Method Kind Arguments Description

[ctor](element, callback) constructor

element: element
object or id,
callback: function
to be called when
the event happens

Creates an object that will
monitor the element.

Derived classes have to
implement this method to
determine the current value
being monitored in the element.

registerCallback() instance (none)

This method is typically not
called externally. It is called
by the object to bind itself
to the element's event.

registerFormCallbacks() instance (none)

This method is typically not
called externally. It is called
by the object to bind itself
to the events of each data
entry element in the form.

onElementEvent() instance (none)

This method is typically not
called externally. It will be
bound to the element's
event.

Property Type Description

element Object The element object that is being monitored.

callback Function(Object,
String)

The function to be called whenever the element changes. It will receive
the element object and the new value.

lastValue String The last value verified in the element.

37

The Form.Element.EventObserver class
Inherits from Abstract.EventObserver
Implementation of an Abstract.EventObserver that executes a callback function to
the appropriate event of the form data entry element to detect value changes in the
element. If the element does not expose any event that reports changes, then you can
use the Form.Element.Observer class instead.
Method Kind Arguments Description

[ctor](element,
callback) constructor

element: element
object or id,
callback: function
to be called when
the event happens

Inherited from
Abstract.EventObserver. Creates an

object that will monitor the element's value
property.

getValue() instance (none) Returns the element's value

The Form.EventObserver class
Inherits from Abstract.EventObserver
Implementation of an Abstract.EventObserver that monitors any changes to any
data entry element contained in a form, using the elements' events to detect when the
value changes. If the form contains elements that do not expose any event that reports
changes, then you can use the Form.Observer class instead.
Method Kind Arguments Description

[ctor](form,
callback) constructor

form: form object or id,
callback: function to be
called when any data
entry element in the
form changes

Inherited from
Abstract.EventObserver. Creates
an object that will monitor the form for changes.

getValue() instance (none) Returns the serialization of all form's data.

The Position object (preliminary documentation)
This object provides a host of functions that help when working with positioning.
Method Kind Arguments Description

prepare() instanc
e (none)

Adjusts the deltaX and deltaY
properties to accommodate changes in the
scroll position. Remember to call this
method before any calls to
withinIncludingScrolloffs
et after the page scrolls.

realOffset(element) instanc
e

element:
object

Returns an Array with the correct scroll
offsets of the element, including any scroll
offsets that affect the element. The
resulting array is similar to
[total_scroll_left,
total_scroll_top]

cumulativeOffset(element) instanc
e

element:
object

Returns an Array with the correct
positioning offsets of the element, including
any offsets that are imposed by positioned
parent elements. The resulting array is
similar to [total_offset_left,
total_offset_top]

38

within(element, x, y) instanc
e

element:
object, x
and y:
coordinates
of a point

Tests if the given point coordinates are
inside the bounding rectangle of the given
element

withinIncludingScrolloffsets(eleme
nt, x, y)

instanc
e

element:
object, x
and y:
coordinates
of a point

overlap(mode, element) instanc
e

mode:
'vertical'
or
'horizontal'
, element:
object

within() needs to be called right
before calling this method. This method will
return a decimal number between 0.0 and
1.0 representing the fraction of the
coordinate that overlaps on the element.
As an example, if the element is a square
DIV with a 100px side and positioned at
(300, 300), then
within(divSquare, 330,
330); overlap('vertical',
divSquare); should return 0.10,
meaning that the point is at the 10%
(30px) mark from the top border of the
DIV.

clone(source, target) instanc
e

source:
element
object or
id, target:
element
object or id

Resizes and repositions the target element
identically to the source element.

The documentation for v1.4.0 is still in progress. Stay tuned for updates in this
document.
If you find errors, inaccurate or incomplete information, or flat-out nonsense, please let
me know and I'll try to fix it as soon as possible.

PDF version created for inclusion in Webucator’s Ajax training courses
(http://www.webucator.com/WebDesign/JSC401.cfm).

